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APPENDIX E:
HUYGHENS-FRAUNHOFER-KIRCHHOFF

APPROXIMATION

We shall use the WKB (eikonal) approximation up to
the exit surface of the lens, but construct a solution of the
wave equation which is better than the WKB expression
in the space beyond the lens. This requires input of just
the WKB values for U and ∇U values at the exit surface
of the lens. The solution beyond the lens is provided by
Green’s theorem:

U(x) =
1
4π

∫
Σ0

dΣ0·[U(x0)∇0G(x,x0)−G(x,x0)∇0U(x0)].

(E1)
In what follows, it is helpful to use symbols illustrated
in Fig. (19), although the details associated with this
particular lens are not needed. In Eq. (E1), x = r is
the observation point beyond the lens. x0 = −Lk̂ + r1

represents a point on Σ0, the exit surface of the lens. (It
also includes the screen, but on it U and ∇U are taken
to vanish). dΣ0 = dΣ0n̂ is the surface element of the
lens, whose normal n̂ points radially outward from it.
G(x,x0) is the Green’s function for the vacuum, given
by Eq. (C13) with r = |x − x0| ≡ D. It satisfies the
wave equation with a point source (Eq. (C1), with n = 1
and with the argument of the delta function changed to
D). Thus, Eq. (E1) describes U as a continuous sum
(integral) of solutions of the wave equation so, of course,
it is a solution of the wave equation.

FIG. 19: Ray geometry for a ball lens

Eq. (E1) can be simplified. From (C13),

∇0G = −GD̂[ik −D−1] ≈ −GD̂ik,

where the approximation is valid for D >> λ. From
(C12),

∇0U(x0) = ikG(x0)∇0Φ(x0) ≈ ikG(x0)v̂0,

where the approximation replaces Φ by Φ0 (since Φ1 is
quite constant over the lens exit surface) and uses (C4).

Thus, (E1) becomes:

U(x) =
−ik

4π

∫
Σ0

dΣ0U(x0)
1
D

eikD(x,x0)n̂ · [v̂0 + D̂].

We are interested in the solution for large L, on the image
plane far from the lens. There, D−1 varies slowly, and
may be taken out of the integral.

As shown at the end of section (B 7), the outgoing ray
from the lens surface satisfies is almost parallel to the
z-axis (the optic axis), i.e., v̂0 ≈ k̂. (For a perfect lens,
v̂0 = k̂ since then the source point is imaged at∞.) Sim-
ilarly, D̂ ≈ k̂ since the intensity at x we wish to explore is
not very much off-axis. The normal to the exit lens sur-
face is not parallel to k̂, but dΣ0 · k̂ = dΣ0n̂ · k̂ = dA0,
where dA0 is the surface element of S0, the plane tan-
gent to the exit surface of the lens at the point where
it intersects the optic axis and perpendicular to the op-
tic axis (the “tangent plane”). Therefore, the surface
integral can be converted from being over the exit sur-
face of the lens to being over the tangent plane. With
U(x0) ∼ exp ikΦ0(x0) given by the WKB approxima-
tion, the approximate solution to be evaluated is

U(x) ∼
∫

S0

dA0e
ik[Φ0(x0)+|x−x0|]. (E2)

Eq. (E2) is what we need hereafter. Since we are only
interested in relative values of |U(x)|2, constant factors
may be dropped or chosen at pleasure.

It is worth re-emphasis, that Φ0(x0) in Eq. (E2) is
the optical path length (C9), from the source to the exit
surface of the lens, at height r0 above the optic axis.
It is not the optical path length from the source to the
tangent plane whose surface area element is integrated
over in Eq. (E2).

APPENDIX F: POINT SPREAD FUNCTION
AND CONSEQUENCES

1. The Diffraction Integral

To integrate (E2), we need D = |x− x0|. Again, refer
to Fig.(19). The origin of the coordinate system is on
the optic axis, a large distance L away from the exit
surface of the lens. D makes a small angle β with respect
to the optic axis, and its horizontal component extends
a small distance ζL beyond the origin. Therefore, the
observation point is

x = r = îLβ + k̂Lζ.

The point on the surface of the lens is

x0 = îr0 cos φ + ĵr0 sinφ− k̂[L + σ]

where φ is the azimuthal angle in the tangent plane and

σ = R−
√

R2 − r2
0 ≈

r2
0
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+
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